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1. Introduction

In this paper, we consider performance of systems with initial
(at t=0) resource of some kind. The simplest example of a
resource is the spare parts for an operating component (standby
reserve). Each failure of an operating component is ‘repaired’
by the substitution of the spare one. The failure of a system
occurs when there are no available spare parts for substitution.
In a general setting, the run out resource increases in time
and the failure occurs when it reaches some deterministic or
random value. If a system consists of a number of components
with resources that can be shared, then sharing increases
reliability of such systems. When a large number of identical
components share resources, some interesting facts can be
observed. In Sections 2 and 3, specifically, we show that, as
the number of components increases, the failure time of a
series system tends to be ‘less random’ in the sense to be
defined later. This means that the corresponding reliability
of a system under certain assumptions can be extremely high
(close to 1) in the interval [0,m), where m is the mean lifetime of a
component, and then falls down sharply to 0 outside this interval.
We believe that this property can be useful in designing reliable
systems.

When considering performance of standby systems with aging
components, the following question arises: will the switching
from one component to another prior to its failure increase the
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performance characteristics of the whole system? We understand
here aging as increasing of the corresponding failure rate or as
decreasing of a performance characteristic of a component
and show in Sections 4 and 5 that such simple switching
strategies exist. Specifically, it turns out that switching at a =t/
2, where t is a mission time, maximizes the probability of the
system’s performance without failures of components in [0,t]. The
strategy that maximizes the mean time to this event is also
suggested.

2. Shared spare parts

Consider a series system of n i.i.d. components with the Cdf
FA(t). Assume that there are n;>0 spare parts (‘cold’ standby) for
the component i, 1<i<n. Assume that the replacement of the
failed component is instantaneous. The system fails when one of
the components fails and there are no more spare parts allocated
to this component. The survival function (F = 1 — F) of our series
system is defined in this case as

Fioy = T[F™ ), (1)
1

where FU")(¢) is the ni+1-fold convolution of F(t) with itself and
FLO(t)=Ft).

It is clear from obvious probabilistic considerations [10] that
the survival probability increases if spare parts can be shared, i.e.,

Fst)=Ft), t=0,

where F(t) denotes survival probability of the system with shared
resources. For the specific exponential case, this obvious fact can
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be illustrated by the following remarkable asymptotic considera-
tions:

Example 1. Let F(t) = 1—exp{At} and n; = m, i = 1,2,...,n. Then

Af) 2)

m
FI™(t) = exp{—at} Z
0
and Eq. (1) becomes

F(t) = (F (o)™ 3)

It is clear that for every fixed t>0 and m>0 the survival
function vanishes: F(t) — 0 as n— co. On the other hand, assume
now that resources are shared. Then the corresponding survival
probability is

(n) t)l

Fy(t) = exp{—nit}) Z (4)

Obtaining the limit values for m>1 and every fixed t>0 in this
case is not so straightforward. Let for simplicity m = 1. As Eq. (4)
defines the Erlangian Cdf (the sum of n+1 i.i.d. exponentially
distributed random variables with mean 1/nl), the central limit
theorem can be applied, which gives for n— oo

t—(m+1)/ni (t—l//l) (1 1 >
Fy(t P ~ @ =N(-,— ], 5
()~ <(«/n+1)/nﬂ. 1/ 2z (5)
where as usually, @(-) denotes the Cdf of the standard normal
distribution N(0,1). As the variance tends to 0 with n— oo,

relationship (5) means that Fy(t) converges uniformly to the step
function:

0, t<1/i,

which, in fact, means that the time to failure of our system with
shared spares converges in distribution to a non-random 1/A. This
conclusion surprisingly differs from the case of the not shared
resources. It is obvious that this result is valid for m>1 and the
rate of convergence in (5) and (6) increases with m. It is also clear
that the assumption of identical components is essential for
sharing of resources, although a generalization to the case when
the spare parts for different components are non-identical but
interchangeable can be also considered (see the next section).

Remark 1. Relationships (6) is a meaningful, practical interpreta-
tion of the well-known fact that as n— oo:
X1 +Xy+---+Xn] 02

Var | ————| =——0,
n n

where X;, i = 1,2,... are i.i.d. random variables with variances o.

3. Shared continuous resource

Consider, firstly, one component that starts operating at t = 0.
Assume that in the process of production (engineering applica-
tions) or birth (biological applications) it had acquired an initial
unobserved resource R [3,4]. For mechanical or electronic items,
for instance, it can be a ‘distance’ between the initial value of the
key parameter and the boundary that defines a failure of the
component. It is natural to assume that it is a continuous random
variable with the Cdf Fo(r) (the discrete case, as in the previous
section, can be considered as well):

Fo(r) = P(R<). (7)

A battery charged to an unobserved level or the ‘vitality’ of an
organism [11] can be considered as relevant examples. A similar
notion of a random resource (hazard potential) was considered in

Refs. [2,7]. Suppose for simplicity that for each realization of R the
component’s remaining resource is monotonically decreasing
with time. Therefore, the run out resource, to be called wear,
monotonically increases. The wear in [0,t) can be defined as

W(t) = /0 t w(u) du, (8)

where w(t) denotes the rate of wear. The failure occurs when the
wear W(t) reaches R. Denote the corresponding random time by T.
It is clear that

P(T<t) = PRSW(b)) = Fo(W(2)). (9)

Therefore, we arrive at a conclusion that this specified survival
model can be interpreted in terms of accelerated life model [1].
The generalization to the case of the monotonically increasing
random wear process W;t>0 is straightforward [3,5].

Consider now the series system of n components of the
described type with shared resources:

Fi(t) = F;(Wy(t)), i=1,2,...,n (10)

Thus, the resources are ‘consumed’ with the ‘accumulated’ rate
S>Twi(t) and the failure of the system occurs when the increasing
> 1Wi(t) reaches the accumulated resource Y"|R;. Denote the Cdf
of S"1R; by Fox(t). Then, similar to Eq. (9), the lifetime Cdf of this
system with shared resources is given by

Fs(t) = Fox (Z Wi(t)>- (11)
T

Eq. (11) states the general result for the series system with
shared resources. The corresponding survival probability is
obviously larger than for the case of individual resources. To
proceed further and to obtain relationships similar to (5) and (6),
we must first consider the case of identically distributed lifetimes
of components with constant in time rates w(t), i.e., Fi(t) = Fo(wt).
Then, similar to relationship (5), for n— oo:

- oS4 =H(u5).

where p and ¢ are the mean and the standard deviation, defined
by the Cdf Fo(wt). Indeed, the rate of wear (resource consumption)
for the system, which can be considered as some integrated
component, is now nw. As the pattern of the overall resource
consumption does not matter, let the resource of each original
component be consumed consequently with this rate, thus
forming the sum of i.i.d. random variables with the Cdf Fo(nwt)
each. Therefore, the probabilistic interpretation is similar to the
one of the previous section. In addition, (12) can be easily adjusted
to the case of different w; because there will be still the sum of
i.i.d. random variables (except the last cycle).

In the next section, we will consider sharing of resources of a
different type.

4. Optimal ‘time sharing’ for a stanby system with
aging components

Consider a standby system of two i.i.d. components. Assume
that the failure rate of a component A(t) is increasing. Therefore,
the corresponding Cdf F.(t) belongs to the IFR class of distribu-
tions. The first component starts operating at t=0 and is
instantaneously switched to the second one upon its failure.
Assume now that switching from the operating component to the
standby one can be instantaneously performed at any instant of
time. The former operating component then starts to be a standby
one and vice versa. We will describe now a simple optimal
switching strategy that maximizes the probability of system’s
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performance without any failures of components in the given time
interval. It is clear that the strategy of this kind cannot change the
probability of system’s failure (when both components are failed),
but an extension of the operation period without failures of
components can be very important in various applications (see
also the next section).

Denote by P;(S,t) the probability of the system’s performance
without failures of components in (0,t] under an arbitrary
switching strategy S. Let P;(a,t) denote this probability with only
one switching at a. Then, it is easy to prove that

2

Indeed, assuming only one switching, the following minimum
should be obtained:

maxs(P1(S,t)) = P; (a = £ t). (13)

a t—a
mina{/ Au)du +/ AU) du}, ae (0,t], (14)
0 0

which simply follows from

Pi(a,t) = exp{—/oa /l(u)du} exp{— /Otiﬂ A(U) du}.

After differentiating the sum of integrals in (14) and equating
the result to zero, we arrive at the following equation with respect
to an optimal a:

a) = At — a). (15)

Eq. (15) has a trivial unique solution a = t/2 for increasing
functions. It can be also easily seen that, due to additivity of
integrals, additional switching cannot improve this result if the
total time of functioning of each component is t/2.

Thus, the described strategy maximizes the probability of
system’s performance without failures of components. We will
now derive a strategy that maximizes the mean time to the first
failure of a component in this system. Denote by Sx, the following
strategy. Assume that the first component functions in (0,At], then
it is switched to the second component, which functions in
(At,2At], then again the first component functions in (2At,3At],
etc. Denote by Aa((t),Falt) the corresponding failure rate and the
Cdf of time to the first failure. As A(t) is increasing, the following
piecewise constant function is the upper bound for Ax({t):

JAb),  te(0,2A4,
w0 ey 1 cratoan 19
whereas the corresponding lower bound is

0, t € (0,2At],
WO=1 on, e ant.on) a7

This means that A (t) <Aa(t) < Z}(t) and

t t t,
[ inwadus [swdus [,
0 0 0
Let now At— 0 and denote the corresponding ‘limiting strategy’

by S,. It can easily be seen from definitions (16) and (17) that, as
At—0:

iat0 - (8)] 0

uniformly in each bounded interval. Finally,

() = 6) (18)

where A(t) denotes the limit failure rate, which has an infinite
(countable) number of ordinary points of discontinuity and is
integrable (with respect to Lebesgue measure). This, as At—0,
leads to the following weak convergence result:

|Fac(t) — Fi(t)| - 0
t
= F(t) =1 fexp{f/o A(3) du}. (19)

It follows from (18) and (19), that the defined operation is a
scale transformation of the underlying failure rate A(t) with a
scaling factor 1/2, and that F(t):F(t/2).

Therefore, by means of strategy S, the ‘integrated systemt’,
which shares in the described way the resources of both aging
components, had been constructed. It follows from relationship
(13) that

Py(S,t) =P <§f> (20)

as the total scheduled time of each component’s operation for
both strategies is equal to t/2. What is the reason for considering
the limit strategy instead of the simplest strategy with one
switching? It can be easily shown that S, maximizes the mean
time to the first failure of a component, T(S) and this can be
relevant in various applications. Indeed,

maxsT1(S) = maxs/‘ P(S,u)du
0

= '/:o exp{—/(f)»(%) du}dt, (21)

as S; maximizes Py(S,u) for each ue(0, ). Hence, the random time
to the first failure is stochastically larger [8,9] under the strategy S;
than under any other strategy. Therefore, the corresponding
inequality for the means trivially holds.

Along with maximization of the mean time to the first failure
of a component, maximization of the time to this event can be
useful in many applications. For example, assume that operation
of our system can be terminated by some external random event.
It can be some other device in series with our system or a shock
effecting both components. As S, maximizes P;(S,u) for each
ue(0,0), this strategy is optimal in the presence of the described
random termination.

The reasoning of this section will be ‘more pronounced’ in the
next section, where we consider a system, which quality of
performance depends on the number of operating components.

Remark 2. The strategy S, is, of course, a mathematical idealiza-
tion. It is obvious that in practice At cannot be very small because
each preventive switching requires some efforts. The switching
device can also be unreliable, but, unlike the switching upon
failure, the state of this device can be checked prior to the
preventive switching. Thus, in practice S; means that switching
should be performed as often as reasonable. Given the corre-
sponding costs and rewards, a problem of obtaining some optimal
Atop can be considered.

Remark 3. The considered approach can be generalized in a
straightforward way to a standby system of n>2 i.i.d. compo-
nents. The strategy, maximizing the time to the first failure, is the
one when n—1 equidistant switching are scheduled. Then, using
the same approach, P,(S,t;,t)—the probability of system of n—1
components performance without failures in(ty,t], where t;
is the time of the first failure, can be maximized, etc. The
corresponding limiting strategy is also defined in an obvious way.
Another generalization is to the case of the non-identical
components with increasing failure rates A4(t) and Ay(t).
The optimal time of switching a can be uniquely obtained from
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the equation similar to (15):
J1(t) = Aa(t — a).
The corresponding limiting strategy also can be defined.

Example 2. Let F(t) be exponential, i.e., F(t)=1—exp{—Ait}.
Assume that each component of this system can be instantly
perfectly repaired upon failure, but the number of repairs is
bounded by m=>0, as, for instance, in the case of spare parts. The
‘total failure’ of each component occurs when m repairs had been
already performed and a component fails. Therefore, the Cdf of
time to this failure is the Erlangian distribution (2) with the
increasing failure rate [6].

What strategy should be used for maximizing the probability of
system’s functioning without total failures of components in the given
interval of time. The formal answer, based on the previous results, is
that the only switching at t = a/2 (and the S, strategy for maximizing
T;) should be used for this purpose. On the other hand, now we are
able to perform the dynamic strategy of switching, based on the
additional information. This information is the number of repairs left
for each component at any instant of time. From a simple probabilistic
reasoning it follows that an optimal strategy in this case is any
strategy S, that leaves the remaining component (after the total
failure of the other one) in the state with no repairs left. Therefore,

2m+1 At i
Py Sope ) = expl—it) S
T

For any other strategy, including the one with switching at a = t/2
and S;, we have

Pl (Sopb t)>Pl(S: t)-

Therefore, additional information can increase the ‘quality’ of the
switching policy.

5. Optimal strategies for finite intervals of time

Consider now the operation of the standby system (described
in Section 4) to its total failure when the second component also
fails. It is obvious that instantaneous, perfect switching from
one component to another cannot change the corresponding
survival function, but it can increase the quality of performance
in the finite interval of time. Therefore, assume additionally
that each operating component is characterized by the reward
function wg(x), i.e., the reward in (x,x+dx] is wg(x)dx+o(dx)
and the accumulated reward (profit) in [0,t] (without failures) is

t
Wr(t) = /O Wr(X) dX.

Let wg(x) be a decreasing function, which describes deterioration
(ageing) with time. The reward in the failed state is assumed to be
0. Therefore, the expectation of the reward accumulated by one
component in [0,t] is

t
R(0, ) = Fe(HWi(t) + /0 FeOWr(x) dx, (22)

where f(x) = F{(x) and F.(t) = 1 — F.(¢).

Similar to the previous section, we want to obtain a strategy of
switching that will maximize the system’s reward Rs(0,t). It is
clear that Ry(0,c0) does not depend on switching and is equal to
2R(0,0), i.e.,

Ry(0, 00) = 2 /0 " FL oW dx, (23)

where we assume, for simplicity, that lim,_ .F.(t)Wg(t) =0,
which given that Wg(t) cannot increase faster than a linear

function, is a very mild condition on the Cdf of a component F{(t).
Note that, the heavy-tailed Pareto distribution for certain values of
parameters does not comply with this condition.

However, for the finite interval, switching can make sense as it
‘moves’ intervals of time with smaller values of reward outside the
mission interval [0,t]. Let a single switching be performed at a. The
corresponding reward in [0,t] is given by the following sum:

Rs(0,t,a) = Fe(a)Fc(t — a)(Wg(a) + Wr(t — a))

+ /0 FoOFo(t — (W) + Wit — x))dx

ot
+ / Fulx— OF @+t — )YWr(@+t - x)
+ Wi(x — a))dx
oy W)+ Wi(y) ddy.
X+z<

The last term, which corresponds to realizations, where both
components had failed in [0,t], similar to (23), does not depend on
switching. Differentiation of Ry(0,t,a) with respect to a results in
the following equation:

Ry(0,t,a) = Fe(a)Fc(t — ay(wg(a) — wg(t — a)).

Therefore, as wg(t) is a monotonically decreasing function,

R;(0,t,a) =0 = wg(a) = Wg(t—a) > a = %
and it can be proved that Ry(0,t,a) achieves maximum at a = t/2.

It can be also proved that additional switching does not improve
this result. Therefore, switching (if any) should be planned at a = t/2.
The limiting strategy of the previous section is considered in a
similar way and the case of components with different decreasing
reward functions Wg; i = 1,2 as well. Specifically, the optimal point
for the latter case is uniquely derived from the equation

WR1(@) = Wra(t —a) = 0.

Example 3. (Explanatory). Assume that the components lifetimes
are described by the degenerate distributions with a mass at b and
exponential decay function exp{-—at}. Let t<b (the similar
considerations hold for b<t<2b, whereas there is no need in
switching when t>2b, as the switching is ‘automatically’
performed at t = b upon failure).

The reward without switching is just the reward from the first
component, i.e.,

ot
R(0,t) = / exp{—ou}du = %(l — exp{—ot}), (24)
Jo
whereas the reward with switching at a = t/2 is
t/2 2
Ry(0,,/2) = 2 / expl—at)dt = (1 — exp(~(ut)/2))
Jo

which is larger than R(0,t).

6. Concluding remarks

In this paper, we have considered different types of resource
sharing. It is clear from general considerations that sharing of
resources of different parts of a system can increase its performance
quality. For example, sharing of spare parts increases probability of
spare parts sufficiency for a system in the mission period [0,t]. It is
shown that when a large number of identical components in series
share resources, the failure time distribution for a series system
tends to a degenerate distribution. This means that the correspond-
ing reliability of a system under certain assumptions can be close to
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1 interval [0,m), where m is the mean lifetime of a component, and
then falls sharply to 0 outside this interval.

Another type of sharing resources arises when considering
performance of standby systems with aging components. We
understand aging as increasing of the corresponding failure rate or
as decreasing of a performance characteristic of a component and
derive simple optimal switching strategies. Specifically, we show
that the switching at a = t/2, maximizes the probability of the
system’s performance without failures of components in [0,t] and
the switching strategy which performs switching at nAt,
n=12,..., where At—0, maximizes the mean time to this event.
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