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a b s t r a c t

Simple series systems of identical components with spare parts are considered. It is shown that the

cumulative distribution function of a system failure time tends to be a step function as the number of

components increases and resources can be shared. An example of ‘continuous resources’ is also

described. The time-sharing strategy for standby systems is investigated. It is proved that an optimal

rule for a system of standby components with increasing failure rates is the single switching performed

at a ¼ t/2, where t is the mission time.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we consider performance of systems with initial
(at t ¼ 0) resource of some kind. The simplest example of a
resource is the spare parts for an operating component (standby
reserve). Each failure of an operating component is ‘repaired’
by the substitution of the spare one. The failure of a system
occurs when there are no available spare parts for substitution.
In a general setting, the run out resource increases in time
and the failure occurs when it reaches some deterministic or
random value. If a system consists of a number of components
with resources that can be shared, then sharing increases
reliability of such systems. When a large number of identical
components share resources, some interesting facts can be
observed. In Sections 2 and 3, specifically, we show that, as
the number of components increases, the failure time of a
series system tends to be ‘less random’ in the sense to be
defined later. This means that the corresponding reliability
of a system under certain assumptions can be extremely high
(close to 1) in the interval [0,m), where m is the mean lifetime of a
component, and then falls down sharply to 0 outside this interval.
We believe that this property can be useful in designing reliable
systems.

When considering performance of standby systems with aging
components, the following question arises: will the switching
from one component to another prior to its failure increase the
ll rights reserved.
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performance characteristics of the whole system? We understand
here aging as increasing of the corresponding failure rate or as
decreasing of a performance characteristic of a component
and show in Sections 4 and 5 that such simple switching
strategies exist. Specifically, it turns out that switching at a ¼ t/
2, where t is a mission time, maximizes the probability of the
system’s performance without failures of components in [0,t]. The
strategy that maximizes the mean time to this event is also
suggested.
2. Shared spare parts

Consider a series system of n i.i.d. components with the Cdf
Fc(t). Assume that there are niX0 spare parts (‘cold’ standby) for
the component i, 1pipn. Assume that the replacement of the
failed component is instantaneous. The system fails when one of
the components fails and there are no more spare parts allocated
to this component. The survival function ðF̄ � 1� FÞ of our series
system is defined in this case as

F̄ðtÞ ¼
Yn

1

F̄
ðniÞ

c ðtÞ, (1)

where FðniÞ
c ðtÞ is the ni+1-fold convolution of Fc(t) with itself and

Fc
(0)(t)�Fc(t).

It is clear from obvious probabilistic considerations [10] that
the survival probability increases if spare parts can be shared, i.e.,

F̄sðtÞXF̄ðtÞ; tX0,

where F̄sðtÞ denotes survival probability of the system with shared
resources. For the specific exponential case, this obvious fact can
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be illustrated by the following remarkable asymptotic considera-
tions:

Example 1. Let Fc(t) ¼ 1�exp{lt} and ni ¼ m, i ¼ 1,2,y,n. Then

F̄
ðmÞ
c ðtÞ ¼ expf�ltg

Xm

0

ðltÞi

i!
(2)

and Eq. (1) becomes

F̄ðtÞ ¼ ðF̄
m
c ðtÞÞ

n. (3)

It is clear that for every fixed t40 and mX0 the survival
function vanishes: F̄ðtÞ ! 0 as n-N. On the other hand, assume
now that resources are shared. Then the corresponding survival
probability is

F̄sðtÞ ¼ expf�nltg
Xnm

0

ðnltÞi

i!
. (4)

Obtaining the limit values for mX1 and every fixed t40 in this
case is not so straightforward. Let for simplicity m ¼ 1. As Eq. (4)
defines the Erlangian Cdf (the sum of n+1 i.i.d. exponentially
distributed random variables with mean 1/nl), the central limit
theorem can be applied, which gives for n-N:

FsðtÞ ! F
t � ðnþ 1Þ=nl
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

Þ=nl

 !
� F

t � 1=l
1=

ffiffiffi
n
p

l

� �
¼ N

1

l
;

1

nl2

� �
, (5)

where as usually, F( � ) denotes the Cdf of the standard normal
distribution N(0,1). As the variance tends to 0 with n-N,
relationship (5) means that Fs(t) converges uniformly to the step
function:

FsðtÞ ! IðtÞ ¼
0; to1=l;
1; tX1=l;

(
(6)

which, in fact, means that the time to failure of our system with
shared spares converges in distribution to a non-random 1/l. This
conclusion surprisingly differs from the case of the not shared
resources. It is obvious that this result is valid for m41 and the
rate of convergence in (5) and (6) increases with m. It is also clear
that the assumption of identical components is essential for
sharing of resources, although a generalization to the case when
the spare parts for different components are non-identical but
interchangeable can be also considered (see the next section).

Remark 1. Relationships (6) is a meaningful, practical interpreta-
tion of the well-known fact that as n-N:

Var
X1 þ X2 þ � � � þ Xn

n

� �
¼
s2

n
! 0,

where Xi, i ¼ 1,2,y are i.i.d. random variables with variances s.

3. Shared continuous resource

Consider, firstly, one component that starts operating at t ¼ 0.
Assume that in the process of production (engineering applica-
tions) or birth (biological applications) it had acquired an initial
unobserved resource R [3,4]. For mechanical or electronic items,
for instance, it can be a ‘distance’ between the initial value of the
key parameter and the boundary that defines a failure of the
component. It is natural to assume that it is a continuous random
variable with the Cdf F0(r) (the discrete case, as in the previous
section, can be considered as well):

F0ðrÞ ¼ PðRprÞ. (7)

A battery charged to an unobserved level or the ‘vitality’ of an
organism [11] can be considered as relevant examples. A similar
notion of a random resource (hazard potential) was considered in
Refs. [2,7]. Suppose for simplicity that for each realization of R the
component’s remaining resource is monotonically decreasing
with time. Therefore, the run out resource, to be called wear,
monotonically increases. The wear in [0,t) can be defined as

WðtÞ ¼

Z t

0
wðuÞdu, (8)

where w(t) denotes the rate of wear. The failure occurs when the
wear W(t) reaches R. Denote the corresponding random time by T.
It is clear that

PðTptÞ � PðRpWðtÞÞ ¼ F0ðWðtÞÞ. (9)

Therefore, we arrive at a conclusion that this specified survival
model can be interpreted in terms of accelerated life model [1].
The generalization to the case of the monotonically increasing
random wear process Wt,tX0 is straightforward [3,5].

Consider now the series system of n components of the
described type with shared resources:

FiðtÞ ¼ F0iðWiðtÞÞ; i ¼ 1;2; . . . ;n. (10)

Thus, the resources are ‘consumed’ with the ‘accumulated’ ratePn
1wiðtÞ and the failure of the system occurs when the increasingPn
1WiðtÞ reaches the accumulated resource

Pn
1Ri. Denote the Cdf

of
Pn

1Ri by F0S(t). Then, similar to Eq. (9), the lifetime Cdf of this
system with shared resources is given by

FsðtÞ ¼ F0S
Xn

1

WiðtÞ

 !
. (11)

Eq. (11) states the general result for the series system with
shared resources. The corresponding survival probability is
obviously larger than for the case of individual resources. To
proceed further and to obtain relationships similar to (5) and (6),
we must first consider the case of identically distributed lifetimes
of components with constant in time rates w(t), i.e., Fi(t) ¼ F0(wt).
Then, similar to relationship (5), for n-N:

FsðtÞ ! F
t � m
s=

ffiffiffi
n
p

� �
¼ N m;s

2

n

� �
, (12)

where m and s are the mean and the standard deviation, defined
by the Cdf F0(wt). Indeed, the rate of wear (resource consumption)
for the system, which can be considered as some integrated

component, is now nw. As the pattern of the overall resource
consumption does not matter, let the resource of each original
component be consumed consequently with this rate, thus
forming the sum of i.i.d. random variables with the Cdf F0(nwt)
each. Therefore, the probabilistic interpretation is similar to the
one of the previous section. In addition, (12) can be easily adjusted
to the case of different wi because there will be still the sum of
i.i.d. random variables (except the last cycle).

In the next section, we will consider sharing of resources of a
different type.
4. Optimal ‘time sharing’ for a stanby system with
aging components

Consider a standby system of two i.i.d. components. Assume
that the failure rate of a component l(t) is increasing. Therefore,
the corresponding Cdf Fc(t) belongs to the IFR class of distribu-
tions. The first component starts operating at t ¼ 0 and is
instantaneously switched to the second one upon its failure.
Assume now that switching from the operating component to the
standby one can be instantaneously performed at any instant of
time. The former operating component then starts to be a standby
one and vice versa. We will describe now a simple optimal
switching strategy that maximizes the probability of system’s
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performance without any failures of components in the given time
interval. It is clear that the strategy of this kind cannot change the
probability of system’s failure (when both components are failed),
but an extension of the operation period without failures of
components can be very important in various applications (see
also the next section).

Denote by P1(S,t) the probability of the system’s performance
without failures of components in (0,t] under an arbitrary
switching strategy S. Let P1(a,t) denote this probability with only
one switching at a. Then, it is easy to prove that

maxSðP1ðS; tÞÞ ¼ P1 a ¼
t

2
; t

� �
. (13)

Indeed, assuming only one switching, the following minimum
should be obtained:

mina

Z a

0
lðuÞduþ

Z t�a

0
lðuÞdu

� �
; a 2 ð0; t�, (14)

which simply follows from

P1ða; tÞ ¼ exp �

Z a

0
lðuÞdu

� �
exp �

Z t�a

0
lðuÞdu

� �
.

After differentiating the sum of integrals in (14) and equating
the result to zero, we arrive at the following equation with respect
to an optimal a:

lðaÞ ¼ lðt � aÞ. (15)

Eq. (15) has a trivial unique solution a ¼ t/2 for increasing
functions. It can be also easily seen that, due to additivity of
integrals, additional switching cannot improve this result if the
total time of functioning of each component is t/2.

Thus, the described strategy maximizes the probability of
system’s performance without failures of components. We will
now derive a strategy that maximizes the mean time to the first
failure of a component in this system. Denote by SDt the following
strategy. Assume that the first component functions in (0,Dt], then
it is switched to the second component, which functions in
(Dt,2Dt], then again the first component functions in (2Dt,3Dt],
etc. Denote by lDt(t),FDt(t) the corresponding failure rate and the
Cdf of time to the first failure. As l(t) is increasing, the following
piecewise constant function is the upper bound for lDt(t):

l̂DtðtÞ ¼

lðDtÞ; t 2 ð0;2Dt�;

lð2DtÞ; t 2 ð2Dt;4Dt�;

lð3DtÞ; t 2 ð4Dt;6Dt�;

� � � � �

8>>><
>>>:

(16)

whereas the corresponding lower bound is

�lDtðtÞ ¼

0; t 2 ð0;2Dt�;

lðDtÞ; t 2 ð2Dt;4Dt�;

lð2DtÞ; t 2 ð4Dt;6Dt�:

� � � � �

8>>><
>>>:

(17)

This means that �lDtðtÞplDtðtÞp l
_

Dt
ðtÞ andZ t

0

�lDtðuÞdup
Z t

0
lDtðuÞdup

Z t

0
l̂DtðuÞdu.

Let now Dt-0 and denote the corresponding ‘limiting strategy’
by Sl. It can easily be seen from definitions (16) and (17) that, as
Dt-0:

lDtðtÞ � l
t

2

� �				
				! 0

uniformly in each bounded interval. Finally,

llðtÞ ¼ l
t

2

� �
, (18)
where ll(t) denotes the limit failure rate, which has an infinite
(countable) number of ordinary points of discontinuity and is
integrable (with respect to Lebesgue measure). This, as Dt-0,
leads to the following weak convergence result:

FDtðtÞ � FlðtÞ
		 		! 0

) FlðtÞ ¼ 1� exp �

Z t

0
l

u

2


 �
du

� �
. (19)

It follows from (18) and (19), that the defined operation is a
scale transformation of the underlying failure rate l(t) with a
scaling factor 1/2, and that Fl(t):F(t/2).

Therefore, by means of strategy Sl, the ‘integrated system’,
which shares in the described way the resources of both aging
components, had been constructed. It follows from relationship
(13) that

P1ðSl; tÞ ¼ P1
t

2
; t

� �
, (20)

as the total scheduled time of each component’s operation for
both strategies is equal to t/2. What is the reason for considering
the limit strategy instead of the simplest strategy with one
switching? It can be easily shown that Sl maximizes the mean
time to the first failure of a component, T1(S) and this can be
relevant in various applications. Indeed,

maxST1ðSÞ ¼ maxS

Z 1
0

P1ðS;uÞdu

¼

Z 1
0

exp �

Z t

0
l

u

2


 �
du

� �
dt, (21)

as Sl maximizes P1(S,u) for each uA(0,N). Hence, the random time
to the first failure is stochastically larger [8,9] under the strategy Sl

than under any other strategy. Therefore, the corresponding
inequality for the means trivially holds.

Along with maximization of the mean time to the first failure
of a component, maximization of the time to this event can be
useful in many applications. For example, assume that operation
of our system can be terminated by some external random event.
It can be some other device in series with our system or a shock
effecting both components. As Sl maximizes P1(S,u) for each
uA(0,N), this strategy is optimal in the presence of the described
random termination.

The reasoning of this section will be ‘more pronounced’ in the
next section, where we consider a system, which quality of
performance depends on the number of operating components.

Remark 2. The strategy Sl is, of course, a mathematical idealiza-
tion. It is obvious that in practice Dt cannot be very small because
each preventive switching requires some efforts. The switching
device can also be unreliable, but, unlike the switching upon
failure, the state of this device can be checked prior to the
preventive switching. Thus, in practice Sl means that switching
should be performed as often as reasonable. Given the corre-
sponding costs and rewards, a problem of obtaining some optimal
Dtop can be considered.

Remark 3. The considered approach can be generalized in a
straightforward way to a standby system of n42 i.i.d. compo-
nents. The strategy, maximizing the time to the first failure, is the
one when n�1 equidistant switching are scheduled. Then, using
the same approach, P2(S,t1,t)—the probability of system of n�1
components performance without failures in(t1,t], where t1

is the time of the first failure, can be maximized, etc. The
corresponding limiting strategy is also defined in an obvious way.
Another generalization is to the case of the non-identical
components with increasing failure rates l1(t) and l2(t).
The optimal time of switching a can be uniquely obtained from
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the equation similar to (15):

l1ðtÞ ¼ l2ðt � aÞ.

The corresponding limiting strategy also can be defined.

Example 2. Let Fc(t) be exponential, i.e., Fc(t) ¼ 1�exp{�lt}.
Assume that each component of this system can be instantly
perfectly repaired upon failure, but the number of repairs is
bounded by mX0, as, for instance, in the case of spare parts. The
‘total failure’ of each component occurs when m repairs had been
already performed and a component fails. Therefore, the Cdf of
time to this failure is the Erlangian distribution (2) with the
increasing failure rate [6].

What strategy should be used for maximizing the probability of

system’s functioning without total failures of components in the given

interval of time. The formal answer, based on the previous results, is

that the only switching at t ¼ a/2 (and the Sl strategy for maximizing

T1) should be used for this purpose. On the other hand, now we are

able to perform the dynamic strategy of switching, based on the

additional information. This information is the number of repairs left

for each component at any instant of time. From a simple probabilistic

reasoning it follows that an optimal strategy in this case is any

strategy Sopt that leaves the remaining component (after the total

failure of the other one) in the state with no repairs left. Therefore,

P1ðSopt ; tÞ ¼ expf�ltg
X2mþ1

0

ðltÞi

i!
.

For any other strategy, including the one with switching at a ¼ t/2

and Sl, we have

P1ðSopt ; tÞXP1ðS; tÞ.

Therefore, additional information can increase the ‘quality’ of the

switching policy.

5. Optimal strategies for finite intervals of time

Consider now the operation of the standby system (described
in Section 4) to its total failure when the second component also
fails. It is obvious that instantaneous, perfect switching from
one component to another cannot change the corresponding
survival function, but it can increase the quality of performance
in the finite interval of time. Therefore, assume additionally
that each operating component is characterized by the reward
function wR(x), i.e., the reward in (x,x+dx] is wR(x)dx+o(dx)
and the accumulated reward (profit) in [0,t] (without failures) is

WRðtÞ ¼

Z t

0
wRðxÞdx.

Let wR(x) be a decreasing function, which describes deterioration
(ageing) with time. The reward in the failed state is assumed to be
0. Therefore, the expectation of the reward accumulated by one
component in [0,t] is

Rð0; tÞ ¼ F̄cðtÞWRðtÞ þ

Z t

0
f cðxÞWRðxÞdx, (22)

where fc(x) ¼ F0c(x) and F̄cðtÞ ¼ 1� FcðtÞ.
Similar to the previous section, we want to obtain a strategy of

switching that will maximize the system’s reward Rs(0,t). It is
clear that Rs(0,N) does not depend on switching and is equal to
2R(0,N), i.e.,

Rsð0;1Þ ¼ 2

Z 1
0

f cðxÞWRðxÞdx, (23)

where we assume, for simplicity, that limt!1F̄cðtÞWRðtÞ ¼ 0,
which given that WR(t) cannot increase faster than a linear
function, is a very mild condition on the Cdf of a component Fc(t).
Note that, the heavy-tailed Pareto distribution for certain values of
parameters does not comply with this condition.

However, for the finite interval, switching can make sense as it
‘moves’ intervals of time with smaller values of reward outside the
mission interval [0,t]. Let a single switching be performed at a. The
corresponding reward in [0,t] is given by the following sum:

Rsð0; t; aÞ ¼ F̄cðaÞF̄cðt � aÞðWRðaÞ þWRðt � aÞÞ

þ

Z a

0
f cðxÞF̄cðt � xÞðWRðxÞ þWRðt � xÞÞdx

þ

Z t

a
f cðx� aÞF̄cðaþ t � xÞðWRðaþ t � xÞ

þWRðx� aÞÞdx

þ

Z Z
xþzot

f cðxÞf cðyÞðWRðxÞ þWRðyÞÞdx dy.

The last term, which corresponds to realizations, where both
components had failed in [0,t], similar to (23), does not depend on
switching. Differentiation of Rs(0,t,a) with respect to a results in
the following equation:

R0sð0; t; aÞ ¼ F̄cðaÞF̄cðt � aÞðwRðaÞ �wRðt � aÞÞ.

Therefore, as wR(t) is a monotonically decreasing function,

R0sð0; t; aÞ ¼ 0) wRðaÞ ¼ wRðt � aÞ ) a ¼
t

2
,

and it can be proved that Rs(0,t,a) achieves maximum at a ¼ t/2.
It can be also proved that additional switching does not improve

this result. Therefore, switching (if any) should be planned at a ¼ t/2.
The limiting strategy of the previous section is considered in a
similar way and the case of components with different decreasing
reward functions WRi, i ¼ 1,2 as well. Specifically, the optimal point
for the latter case is uniquely derived from the equation

wR1ðaÞ ¼ wR2ðt � aÞ ¼ 0.

Example 3. (Explanatory). Assume that the components lifetimes
are described by the degenerate distributions with a mass at b and
exponential decay function exp{�at}. Let tob (the similar
considerations hold for boto2b, whereas there is no need in
switching when t42b, as the switching is ‘automatically’
performed at t ¼ b upon failure).

The reward without switching is just the reward from the first

component, i.e.,

Rð0; tÞ ¼

Z t

0
expf�augdu ¼

1

a ð1� expf�atgÞ, (24)

whereas the reward with switching at a ¼ t/2 is

Rsð0; t; t=2Þ ¼ 2

Z t=2

0
expf�atgdt ¼

2

a ð1� expf�ðatÞ=2gÞ,

which is larger than R(0,t).
6. Concluding remarks

In this paper, we have considered different types of resource
sharing. It is clear from general considerations that sharing of
resources of different parts of a system can increase its performance
quality. For example, sharing of spare parts increases probability of
spare parts sufficiency for a system in the mission period [0,t]. It is
shown that when a large number of identical components in series
share resources, the failure time distribution for a series system
tends to a degenerate distribution. This means that the correspond-
ing reliability of a system under certain assumptions can be close to
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1 interval [0,m), where m is the mean lifetime of a component, and
then falls sharply to 0 outside this interval.

Another type of sharing resources arises when considering
performance of standby systems with aging components. We
understand aging as increasing of the corresponding failure rate or
as decreasing of a performance characteristic of a component and
derive simple optimal switching strategies. Specifically, we show
that the switching at a ¼ t/2, maximizes the probability of the
system’s performance without failures of components in [0,t] and
the switching strategy which performs switching at nDt,
n ¼ 1,2,y, where Dt-0, maximizes the mean time to this event.
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